If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-26X+42=0
a = 1; b = -26; c = +42;
Δ = b2-4ac
Δ = -262-4·1·42
Δ = 508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{508}=\sqrt{4*127}=\sqrt{4}*\sqrt{127}=2\sqrt{127}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{127}}{2*1}=\frac{26-2\sqrt{127}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{127}}{2*1}=\frac{26+2\sqrt{127}}{2} $
| B=4x+45 | | 2/5x+21=-1.6x+5-2x | | 7(3a+4)=11(1a-1)+19 | | 400-60x=100 | | 220+115x=660 | | 7x-3x=-6(x+10)=5(-3-3x) | | 16=2u+12 | | 11/6 =n+97 | | 0=7×t-4.9t^2-20 | | -28z-0.8=-38z+1.5 | | 16-5a+2a-1=41-1a | | 35-4h=1 | | (14+19+x)÷3=17 | | -7(5x-2)+5=35x+19 | | 12-3w=7 | | 6x+3x+x-7=180 | | 20=7×t-4.9t^2 | | 2x+11=5x-9 | | 2/5x+18=32 | | 15+x+-15=90 | | 6|(2x-4)|=96 | | -2x-7/3=23/3 | | -5m=15 | | 15+-15+x=90 | | 3(x+4)-(x-3)=19 | | m/6+(-14)=-56 | | -2(6a-1)=-5a-15+6 | | 3x+4=4x-27 | | P-17=13-6p | | 3-5(2x+4)+3x=11 | | 19x-1=12x-36 | | 15+15+x=90 |